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Structure of this Chapter

In Section 4.1 we examine the relational algebra and in Section 4.2 we examine two forms
of the relational calculus: tuple relational calculus and domain relational calculus. In
Section 4.3 we briefly discuss some other relational languages. We use the DreamHome
rental database instance shown in Figure 3.3 to illustrate the operations.

In Chapters 5 and 6 we examine SQL (Structured Query Language), the formal and
de facto standard language for RDBMSs, which has constructs based on the tuple rela-
tional calculus. In Chapter 7 we examine QBE (Query-By-Example), another highly
popular visual query language for RDBMSs, which is in part based on the domain
relational calculus.

The Relational Algebra

The relational algebra is a theoretical language with operations that work on one or
more relations to define another relation without changing the original relation(s). Thus,
both the operands and the results are relations, and so the output from one operation can
become the input to another operation. This allows expressions to be nested in the rela-
tional algebra, just as we can nest arithmetic operations. This property is called closure:
relations are closed under the algebra, just as numbers are closed under arithmetic
operations.

The relational algebra is a relation-at-a-time (or set) language in which all tuples,
possibly from several relations, are manipulated in one statement without looping. There
are several variations of syntax for relational algebra commands and we use a common
symbolic notation for the commands and present it informally. The interested reader is
referred to Ullman (1988) for a more formal treatment.

There are many variations of the operations that are included in relational algebra. Codd
(1972a) originally proposed eight operations, but several others have been developed.
The five fundamental operations in relational algebra, Selection, Projection, Cartesian
product, Union, and Set difference, perform most of the data retrieval operations that we
are interested in. In addition, there are also the Join, Intersection, and Division operations,
which can be expressed in terms of the five basic operations. The function of each opera-
tion is illustrated in Figure 4.1.

The Selection and Projection operations are unary operations, since they operate on one
relation. The other operations work on pairs of relations and are therefore called binary
operations. In the following definitions, let R and S be two relations defined over the
attributes A = (a;, a,, . . . , ay) and B = (b, b, . . ., by), respectively.

Unary Operations

We start the discussion of the relational algebra by examining the two unary operations:
Selection and Projection.

4.1.1
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Figure 4.1
lllustration showing
the function of the
relational algebra
operations.
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Selection (or Restriction)

Ouredicate(R)  The Selection operation works on a single relation R and defines a
relation that contains only those tuples of R that satisfy the specified
condition ( predicate).



Example 4.1 Selection operation

List all staff with a salary greater than £10,000.

Gsa\ary > lUOUO(Staﬁ)
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Here, the input relation is Staff and the predicate is salary > 10000. The Selection operation
defines a relation containing only those Staff tuples with a salary greater than £10,000. The
result of this operation is shown in Figure 4.2. More complex predicates can be generated

using the logical operators A (AND), v (OR) and ~ (NOT).

staffNo [ fName | IName | position | sex | DOB salary | branchNo
SL21 John White | Manager M 1-Oct-45 | 30000 | B00O5
SG37 Ann Beech | Assistant F 10-Nov-60 | 12000 | B003
SG14 David | Ford Supervisor [ M | 24-Mar-58 | 18000 | B003
SG5 Susan [ Brand | Manager F 3-Jun-40 24000 | B003

Projection

Figure 4.2
Selecting salary
> 10000 from the
Staff relation.

1

IT,,...,a(R) The Projection operation works on a single relation R and defines a
relation that contains a vertical subset of R, extracting the values of
specified attributes and eliminating duplicates.

Example 4.2 Projection operation

Produce a list of salaries for all staff, showing only the staffNo, fName, IName, and

salary details.

Hs\aﬁNo, fName, IName, sa\ary(Staff)

In this example, the Projection operation defines a relation that contains only the desig-
nated Staff attributes staffNo, fName, IName, and salary, in the specified order. The result of
this operation is shown in Figure 4.3.

staffNo [ fName | IName | salary
SL21 John White 30000
SG37 Ann Beech 12000
SG14 David | Ford 18000
SA9 Mary Howe 9000
SG5 Susan Brand 24000
SL41 Julie Lee 9000

Figure 4.3
Projecting the Staff
relation over the
staffNo, fName,
IName, and salary
attributes.

1
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4.1.2 Set Operations

The Selection and Projection operations extract information from only one relation.
There are obviously cases where we would like to combine information from several
relations. In the remainder of this section, we examine the binary operations of the rela-
tional algebra, starting with the set operations of Union, Set difference, Intersection, and
Cartesian product.

Union

R US The union of two relations R and S defines a relation that contains all the
tuples of R, or S, or both R and S, duplicate tuples being eliminated. R and S
must be union-compatible.

If R and S have [ and J tuples, respectively, their union is obtained by concatenating them
into one relation with a maximum of (/ +J) tuples. Union is possible only if the schemas
of the two relations match, that is, if they have the same number of attributes with each
pair of corresponding attributes having the same domain. In other words, the relations
must be union-compatible. Note that attributes names are not used in defining union-
compatibility. In some cases, the Projection operation may be used to make two relations
union-compatible.

Example 4.3 Union operation

city

London List all cities where there is either a branch office or a property for rent.
Aberdeen

Glasgow I1,(Branch) U I (PropertyForRent)

Bristol

To produce union-compatible relations, we first use the Projection operation to project the
Figure 4.4 Branch and PropertyForRent relations over the attribute city, eliminating duplicates where
Union based onthe  necessary. We then use the Union operation to combine these new relations to produce the

city attribute from result shown in Figure 4.4.

the Branch and I
PropertyForRent

relations.

Set difference

R -8 The Set difference operation defines a relation consisting of the tuples that are
in relation R, but not in S. R and S must be union-compatible.
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I Example 4.4 Sect difference operation

List all cities where there is a branch office but no properties for rent.
I1,,(Branch) — I, (PropertyForRent)

As in the previous example, we produce union-compatible relations by projecting the
Branch and PropertyForRent relations over the attribute city. We then use the Set difference
operation to combine these new relations to produce the result shown in Figure 4.5.

Intersection

R NS The Intersection operation defines a relation consisting of the set of all tuples
that are in both R and S. R and S must be union-compatible.

I Example 4.5 Intersection operation

List all cities where there is both a branch office and at least one property for rent.
I, (Branch) M I, (PropertyForRent)

As in the previous example, we produce union-compatible relations by projecting the
Branch and PropertyForRent relations over the attribute city. We then use the Intersection

23

city

Bristol

Figure 4.5

Set difference based
on the city attribute
from the Branch and
PropertyForRent
relations.

city

Aberdeen
London
Glasgow

Figure 4.6
Intersection based
on city attribute from
the Branch and
PropertyForRent
relations.

operation to combine these new relations to produce the result shown in Figure 4.6. I

Note that we can express the Intersection operation in terms of the Set difference operation:

RNS=R—(R-29)
Cartesian product

R XS The Cartesian product operation defines a relation that is the concatenation of
every tuple of relation R with every tuple of relation S.

The Cartesian product operation multiplies two relations to define another relation con-
sisting of all possible pairs of tuples from the two relations. Therefore, if one relation has
I tuples and N attributes and the other has J tuples and M attributes, the Cartesian product
relation will contain (I * J) tuples with (N + M) attributes. It is possible that the two rela-
tions may have attributes with the same name. In this case, the attribute names are prefixed
with the relation name to maintain the uniqueness of attribute names within a relation.
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I Example 4.6 Cartesian product operation

Figure 4.7
Cartesian product of
reduced Client and
Viewing relations.

Figure 4.8
Restricted Cartesian
product of reduced
Client and Viewing
relations.

List the names and comments of all clients who have viewed a property for rent.

The names of clients are held in the Client relation and the details of viewings are held in
the Viewing relation. To obtain the list of clients and the comments on properties they have
viewed, we need to combine these two relations:

(HchentNo, fName, \Name(C”ent)) X (HchemNo, propertyNo, comment(VieWing))

This result of this operation is shown in Figure 4.7. In its present form, this relation con-
tains more information than we require. For example, the first tuple of this relation con-
tains different clientNo values. To obtain the required list, we need to carry out a Selection
operation on this relation to extract those tuples where Client.clientNo = Viewing.clientNo. The
complete operation is thus:

GCI\em,chemNo = \/\ewing,chemNo((HchemNo, fName, \Name(C”ent)) X (HchemNo, propertyNo, comment(VieWing)))

The result of this operation is shown in Figure 4.8.

client.clientNo | fName | IName | Viewing.clientNo | propertyNo | comment
CR76 John Kay CR56 PA14 too small

CR76 John Kay CR76 PG4 too remote
CR76 John Kay CR56 PG4

CR76 John Kay CR62 PA14 no dining room
CR76 John Kay CR56 PG36

CR56 Aline | Stewart | CR56 PA14 too small

CR56 Aline | Stewart | CR76 PG4 too remote
CR56 Aline | Stewart | CR56 PG4

CR56 Aline | Stewart | CR62 PA14 no dining room
CR56 Aline | Stewart | CR56 PG36

CR74 Mike Ritchie | CR56 PA14 too small

CR74 Mike Ritchie | CR76 PG4 too remote
CR74 Mike Ritchie [ CR56 PG4

CR74 Mike [ Ritchie | CR62 PA14 no dining room
CR74 Mike Ritchie | CR56 PG36

CR62 Mary [ Tregear | CR56 PA14 too small

CR62 Mary | Tregear [ CR76 PG4 too remote
CR62 Mary [ Tregear | CR56 PG4

CR62 Mary | Tregear | CR62 PA14 no dining room
CR62 Mary | Tregear [ CR56 PG36

client.clientNo | fName [ IName | Viewing.clientNo | propertyNo [ comment
CR76 John Kay CR76 PG4 too remote
CR56 Aline | Stewart | CR56 PA14 too small

CR56 Aline | Stewart | CR56 PG4

CR56 Aline | Stewart | CR56 PG36

CR62 Mary | Tregear [ CR62 PA14 no dining room I
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Decomposing complex operations

The relational algebra operations can be of arbitrary complexity. We can decompose such
operations into a series of smaller relational algebra operations and give a name to the
results of intermediate expressions. We use the assignment operation, denoted by «, to
name the results of a relational algebra operation. This works in a similar manner to the
assignment operation in a programming language: in this case, the right-hand side of the
operation is assigned to the left-hand side. For instance, in the previous example we could
rewrite the operation as follows:

TempViewing(clientNo, propertyNo, comment) <= Ilno, propertyno, comment(ViEWING)

TempClient(clientNo, fName, IName) <= I oo, mvame, name(Client)

Comment(clientNo, fName, IName, vclientNo, propertyNo, comment) <—
TempClient X TempViewing

Result <= Ogjennio = voiennio(Comment)

Alternatively, we can use the Rename operation p (rho), which gives a name to the result
of a relational algebra operation. Rename allows an optional name for each of the attri-
butes of the new relation to be specified.

ps(E) or The Rename operation provides a new name S for the expression
Ps(a,, a, . ..,a)(E) E, and optionally names the attributes as a;, a,, . . ., a..

Join Operations

Typically, we want only combinations of the Cartesian product that satisfy certain condi-
tions and so we would normally use a Join operation instead of the Cartesian product
operation. The Join operation, which combines two relations to form a new relation, is one
of the essential operations in the relational algebra. Join is a derivative of Cartesian pro-
duct, equivalent to performing a Selection operation, using the join predicate as the selec-
tion formula, over the Cartesian product of the two operand relations. Join is one of the
most difficult operations to implement efficiently in an RDBMS and is one of the reasons
why relational systems have intrinsic performance problems. We examine strategies for
implementing the Join operation in Section 21.4.3.

There are various forms of Join operation, each with subtle differences, some more use-
ful than others:

m Theta join
m Equijoin (a particular type of Theta join)
m Natural join

m Outer join
|

Semijoin.

4.1.3

95
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Theta join (B-join)

RS The Theta join operation defines a relation that contains tuples satisfying
the predicate F from the Cartesian product of R and S. The predicate F is
of the form R.a; 6 S.b, where 6 may be one of the comparison operators
(<, &>, 2, =, #).

We can rewrite the Theta join in terms of the basic Selection and Cartesian product
operations:

R bz S =0, (RX S)

As with Cartesian product, the degree of a Theta join is the sum of the degrees of the
operand relations R and S. In the case where the predicate F' contains only equality (=), the
term Equijoin is used instead. Consider again the query of Example 4.6.

Example 4.7 Equijoin operation

List the names and comments of all clients who have viewed a property for rent.

In Example 4.6 we used the Cartesian product and Selection operations to obtain this list.
However, the same result is obtained using the Equijoin operation:

(HchentNo, fName, \Name(C”ent)) > Client.clientNo = Viewing.clientNo (HchentNo, propertyNo, comment(VieWing))
or
Result < TempCIIent > TempClient.clientNo = TempViewing.clientNo Temp\/IeWIng

The result of these operations was shown in Figure 4.8.

1

Natural join

R >« S The Natural join is an Equijoin of the two relations R and S over all common
attributes x. One occurrence of each common attribute is eliminated from
the result.

The Natural join operation performs an Equijoin over all the attributes in the two relations
that have the same name. The degree of a Natural join is the sum of the degrees of the
relations R and S less the number of attributes in x.
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I Example 4.8 Natural join operation

List the names and comments of all clients who have viewed a property for rent.

In Example 4.7 we used the Equijoin to produce this list, but the resulting relation had
two occurrences of the join attribute clientNo. We can use the Natural join to remove one
occurrence of the clientNo attribute:

(HchemNo, fName, \Name(C”ent)) > (HchemNo, propertyNo, comment(VieWing))
or
Result = TempClient »« TempViewing

The result of this operation is shown in Figure 4.9.

lientNo | fN IN N Figure 4.9
clientNo ame ame | propertyNo [ comment Natural join of
CR76 John | Kay PG4 too remote restricted Client and
CR56 Aline | Stewart | PA14 too small Viewing relations.

CR56 Aline | Stewart | PG4
CR56 Aline | Stewart | PG36
CR62 Mary | Tregear | PAl4 no dining room

1

Outer join

Often in joining two relations, a tuple in one relation does not have a matching tuple
in the other relation; in other words, there is no matching value in the join attributes.
We may want tuples from one of the relations to appear in the result even when there
are no matching values in the other relation. This may be accomplished using the Outer
join.

R >« 8 The (left) Outer join is a join in which tuples from R that do not have match-
ing values in the common attributes of S are also included in the result
relation. Missing values in the second relation are set to null.

The Outer join is becoming more widely available in relational systems and is a specified
operator in the SQL standard (see Section 5.3.7). The advantage of an Outer join is that
information is preserved, that is, the Outer join preserves tuples that would have been lost
by other types of join.
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Example 4.9 Left Outer join operation

Produce a status report on property viewings.

In this case, we want to produce a relation consisting of the properties that have been
viewed with comments and those that have not been viewed. This can be achieved using
the following Outer join:

(HpropertyNo, street, cwty(PrOpertyForRent)) =>4 VIeWIng

The resulting relation is shown in Figure 4.10. Note that properties PL94, PG21, and PG16
have no viewings, but these tuples are still contained in the result with nulls for the
attributes from the Viewing relation.

Figure 4.10 . ' n
Left (natural) propertyNo | street city clientNo | viewDate | comment
Outer join of PAl4 16 Holhead | Aberdeen | CR56 24-May-04 | too small
PropertyForRent and PA14 16 Holhead | Aberdeen | CR62 14-May-04 [ no dining room
Viewing relations. PL94 6 Argyll St London | null null null

PG4 6 Lawrence St | Glasgow | CR76 20-Apr-04 | too remote

PG4 6 Lawrence St | Glasgow | CR56 26-May-04

PG36 2 Manor Rd | Glasgow | CR56 28-Apr-04

PG21 18 Dale Rd Glasgow | null null null

PGl6 5Novar Dr | Glasgow | null null null I

Strictly speaking, Example 4.9 is a Left (natural) Outer join as it keeps every tuple in
the left-hand relation in the result. Similarly, there is a Right Outer join that keeps every
tuple in the right-hand relation in the result. There is also a Full Outer join that keeps all
tuples in both relations, padding tuples with nulls when no matching tuples are found.

Semijoin

R»>S The Semijoin operation defines a relation that contains the tuples of R that
participate in the join of R with S.

The Semijoin operation performs a join of the two relations and then projects over the
attributes of the first operand. One advantage of a Semijoin is that it decreases the number
of tuples that need to be handled to form the join. It is particularly useful for computing
joins in distributed systems (see Sections 22.4.2 and 23.6.2). We can rewrite the Semijoin
using the Projection and Join operations:

Rop S=T1,(R »ap S) A is the set of all attributes for R

This is actually a Semi-Theta join. There are variants for Semi-Equijoin and Semi-Natural
join.
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I Example 4.10 Semijoin operation

List complete details of all staff who work at the branch in Glasgow.

If we are interested in seeing only the attributes of the Staff relation, we can use the fol-
lowing Semijoin operation, producing the relation shown in Figure 4.11.

Staff » Staff.branchNo = Branch branchNo. (Gcwty = ‘Glasgow’ (BranCh) )

Fi 4.11
staffNo [ fName | IName | position |sex | DOB salary | branchNo 'gl{",e

Semijoin of Staff and
SG37 |Ann |Beech [Assistant |F | 10-Nov-60 [ 12000 |B003 Branch relations.

SG14 David | Ford Supervisor | M | 24- Mar-58 | 18000 | B003
SG5 Susan | Brand | Manager |F 3-Jun-40 | 24000 | B003

1

Division Operation 4.1.4

The Division operation is useful for a particular type of query that occurs quite frequently
in database applications. Assume relation R is defined over the attribute set A and relation
S is defined over the attribute set B such that B A (B is a subset of A). Let C = A — B, that
is, C is the set of attributes of R that are not attributes of S. We have the following definition
of the Division operation.

R +S The Division operation defines a relation over the attributes C that consists of
the set of tuples from R that match the combination of every tuple in S.

We can express the Division operation in terms of the basic operations:

T, < TI.(R)
T, < II.((T, XS)—R)
T«<T,-T,

I Example 4.11 Division operation

Identify all clients who have viewed all properties with three rooms.

We can use the Selection operation to find all properties with three rooms followed by the
Projection operation to produce a relation containing only these property numbers. We can
then use the following Division operation to obtain the new relation shown in Figure 4.12.

(HchemNo, propenyNo(VieWing)) - (HpropenyNo(Grooms = 3(PropertyForRent)))
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Chapter 21 B Query Processing

21.3.1

Transformation Rules for the Relational
Algebra Operations

By applying transformation rules, the optimizer can transform one relational algebra
expression into an equivalent expression that is known to be more efficient. We will use
these rules to restructure the (canonical) relational algebra tree generated during query
decomposition. Proofs of the rules can be found in Aho et al. (1979). In listing these rules,
we use three relations R, S, and T, with R defined over the attributes A= {A, A,, ..., A,}, and
S defined over B= {B|, B,, . .., B,}; p, q, and r denote predicates, and L, L, L,, M, M, M,, and
N denote sets of attributes.

(1) Conjunctive Selection operations can cascade into individual Selection opera-
tions (and vice versa).

Gprgr(R) = 6,(6,(0,(R)))
This transformation is sometimes referred to as cascade of selection. For example:
ObranchNo=B003" A satary>15000(StafH) = Oprancnno=B003' (Tsatary>15000(Staff))
(2) Commutativity of Selection operations.
6,(0,(R)) = 6,(0,(R))
For example:
Obrancino=B003"(Tsatary>15000(StafF)) = Oaiary>15000( Corancino=-poo3-(Staff))
(3) In a sequence of Projection operations, only the last in the sequence is required.
ILIT,, . .. I(R) =T1(R)
For example:
Hiname Mirancano, mame(Staff) = Iiyane(Staff)

(4) Commutativity of Selection and Projection.
If the predicate p involves only the attributes in the projection list, then the Selection
and Projection operations commute:

I, .. A 0,R)=0,1, . .(R)  wherepe {A,A,...,A,}
For example:
Mivame, vame(Oiname="Beceh (Staff)) = Oiname=Beceh (I name, name (Staff))
(5) Commutativity of Theta join (and Cartesian product).
Rp<, S=Spq, R

RXS=S8SXR



(6)

(7

21.3 Heuristical Approach to Query Optimization

As the Equijoin and Natural join are special cases of the Theta join, then this rule also
applies to these Join operations. For example, using the Equijoin of Staff and Branch:

Staff ><1Staff.branchNo:BramchbranchNo Branch = Branch Pstaff branchNo=Branch.branchNo Staff

Commutativity of Selection and Theta join (or Cartesian product).
If the selection predicate involves only attributes of one of the relations being joined,
then the Selection and Join (or Cartesian product) operations commute:

Gy(R >4, S) = (G(R)) 4, S
0,(RX8) =(0,R)) xS where p € {A, Ay ..., A}

Alternatively, if the selection predicate is a conjunctive predicate of the form
(p A q), where p involves only attributes of R, and q involves only attributes of S, then
the Selection and Theta join operations commute as:

Op (R >4, S) = (0,(R)) >, (G,(S))
Gy o(RXS) = (0,(R)) X (0,(9))
For example:
Gposwl\on:‘Manager’ /\cny:‘London’(Staﬁ ><1Staff.branchNo:Esranch.branch!\lo Branch) =
(Gposwlwon:‘Manager’(Staﬁ)) Dstaff branchNo=Branch.branchNo (Gcny:‘London’(BranCh))

Commutativity of Projection and Theta join (or Cartesian product).

If the projection list is of the form L =L, U L,, where L, involves only attributes of R,
and L, involves only attributes of S, then provided the join condition only contains
attributes of L, the Projection and Theta join operations commute as:

I, L LR e, 8) = (I (R)) »a, (TT_(S))
For example:
Hposmon, city, branchNo(Staﬁc MS\afﬁbranchNo=Branch.branchNo Branch) =
(Hposmon, branchNo(Staff)) [><]StaffvbranchNo=Branch.branchNo (chly, branchNo(BranCh))

If the join condition contains additional attributes not in L, say attributes M =M, U M,
where M, involves only attributes of R, and M, involves only attributes of S, then a
final Projection operation is required:

I, LR 8) =T1 (T G (R)) pep (T1, 1 (S))
For example:

Hposmon, c\ty(Staﬁc MStaff.branchNo:Branch.branchNo Branch) =

Hposmon, cwty((Hposmon, branchNo(Staff)) [><]Slaff.branchNo:Branch.branchNo (chty, branchNo(BranCh)))

641
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t)

)

(10)

(1)

12)

Commutativity of Union and Intersection (but not Set difference).
RUS=SUR

RNS=8SNR

Commutativity of Selection and set operations (Union, Intersection, and Set
difference).

0,(RU S)=0,(8) Uo,R)

0,(RM S)=0,(8) N oy(R)

0,(R=35)=0,(8) —0,(R)
Commutativity of Projection and Union.

I[MI(RuUS)=T1(S) UIL(R)

Associativity of Theta join (and Cartesian product).
Cartesian product and Natural join are always associative:

(Rpa4S)pa T=Rpa(SpaT)
(RXS)XT=RX(SXT)

If the join condition g involves only attributes from the relations S and T, then Theta
join is associative in the following manner:

(Rp4,8) by ., T=R >4, (Sp<,T)
For example:
(Staﬁ [><]Staff,staffNo=Proper{yForRemvstaﬁNo PropertyForRent) NownerNo=Owner.ownerNo A Staff.IName=0wner.IName Owner

= Staﬁ ><1Staff.slaffNo=PropenyForRem.staffNo/\Staff.\Name=\Name (PropertyForRent ><1ownerNo Owner)

Note that in this example it would be incorrect simply to ‘move the brackets’ as this
would result in an undefined reference (Staff.IName) in the join condition between
PropertyForRent and Owner:

PropertyForRent NProperlyForRem,ownerNo=OwnervownerNo A Staff.IName=Owner.IName Owner
Associativity of Union and Intersection (but not Set difference).

RUS)YUT=SURUT)

RNSY)YNT=SN(RNT)
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Example 21.3 Use of transformation rules

For prospective renters who are looking for flats, find the properties that match their
requirements and are owned by owner CO93.

We can write this query in SQL as:

SELECT p.propertyNo, p.street

FROM Cilient ¢, Viewing v, PropertyForRent p

WHERE c.prefType = ‘Flat’ AND c.clientNo = v.clientNo AND
v.propertyNo = p.propertyNo AND c.maxRent >= p.rent AND
c.prefType = p.type AND p.ownerNo = ‘C0O93’;

For the purposes of this example we will assume that there are fewer properties owned by
owner CO93 than prospective renters who have specified a preferred property type of Flat.
Converting the SQL to relational algebra, we have:

Hp,propenyNo, pvstreet(cc.prenype:‘Flat’ A c.clientNo=v.clientNo A v.propertyNo=p.propertyNo A c.maxRent>= p.rent A c.prefType=p.type A
p.ownerNo=‘C093'((C X V) X p))

We can represent this query as the canonical relational algebra tree shown in Figure 21.4(a).
We now use the following transformation rules to improve the efficiency of the execution
strategy:

(1) (a) Rule 1, to split the conjunction of Selection operations into individual Selection
operations.
(b) Rule 2 and Rule 6, to reorder the Selection operations and then commute the
Selections and Cartesian products.
The result of these first two steps is shown in Figure 21.4(b).

(2) From Section 4.1.3, we can rewrite a Selection with an Equijoin predicate and a
Cartesian product operation, as an Equijoin operation; that is:

Ora=so(R X S) = R bdgo—sp S

Apply this transformation where appropriate. The result of this step is shown in
Figure 21.4(c).

(3) Rule 11, to reorder the Equijoins, so that the more restrictive selection on (p.ownerNo
= ‘C093’) is performed first, as shown in Figure 21.4(d).

(4) Rules 4 and 7, to move the Projections down past the Equijoins, and create new
Projection operations as required. The result of applying these rules is shown in
Figure 21.4(e).

An additional optimization in this particular example is to note that the Selection
operation (c.prefType=p.type) can be reduced to (p.type = ‘Flat’), as we know that
(c.prefType="Flat’) from the first clause in the predicate. Using this substitution, we push
this Selection down the tree, resulting in the final reduced relational algebra tree shown in
Figure 21.4(f).
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Figure 21.4 Relational algebra tree for Example 21.3: (a) canonical relational algebra tree; (b) relational algebra tree

formed by pushing Selections down; (c) relational algebra tree formed by changing Selection/Cartesian products to Equijoins;
(d) relational algebra tree formed using associativity of Equijoins; (e) relational algebra tree formed by pushing Projections down;
(f) final reduced relational algebra tree formed by substituting c.prefType = ‘Flat’ in Selection on p.type and pushing resulting

Selection down tree.



21.2 Query Decomposition

overhead is removed, and there may be more time available to evaluate a larger number of
execution strategies, thereby increasing the chances of finding a more optimum strategy.
For queries that are executed many times, taking some additional time to find a more
optimum plan may prove to be highly beneficial. The disadvantages arise from the fact
that the execution strategy that is chosen as being optimal when the query is compiled may
no longer be optimal when the query is run. However, a hybrid approach could be used
to overcome this disadvantage, where the query is re-optimized if the system detects that
the database statistics have changed significantly since the query was last compiled.
Alternatively, the system could compile the query for the first execution in each session,
and then cache the optimum plan for the remainder of the session, so the cost is spread
across the entire DBMS session.

Query Decomposition

Query decomposition is the first phase of query processing. The aims of query decom-
position are to transform a high-level query into a relational algebra query, and to check that
the query is syntactically and semantically correct. The typical stages of query decomposi-
tion are analysis, normalization, semantic analysis, simplification, and query restructuring.

(1) Analysis

In this stage, the query is lexically and syntactically analyzed using the techniques of
programming language compilers (see, for example, Aho and Ullman, 1977). In addition,
this stage verifies that the relations and attributes specified in the query are defined in the
system catalog. It also verifies that any operations applied to database objects are appro-
priate for the object type. For example, consider the following query:

SELECT staffNumber
FROM Staff
WHERE position > 10;

This query would be rejected on two grounds:

(1) In the select list, the attribute staffNumber is not defined for the Staff relation (should be
staffNo).

(2) In the WHERE clause, the comparison ‘>10’ is incompatible with the data type

position, which is a variable character string.

On completion of this stage, the high-level query has been transformed into some inter-
nal representation that is more suitable for processing. The internal form that is typically
chosen is some kind of query tree, which is constructed as follows:

m A leaf node is created for each base relation in the query.

® A non-leaf node is created for each intermediate relation produced by a relational
algebra operation.

m The root of the tree represents the result of the query.

m The sequence of operations is directed from the leaves to the root.
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Figure 21.2
Example relational
algebra tree.

™ s.branchNo=b.branchNo Root
Os.position="Manager' Op,city—London Intermediate operations
Staff Branch Leaves

Figure 21.2 shows an example of a query tree for the SQL statement of Example 21.1
that uses the relational algebra in its internal representation. We refer to this type of query
tree as a relational algebra tree.

(2) Normalization

The normalization stage of query processing converts the query into a normalized form
that can be more easily manipulated. The predicate (in SQL, the WHERE condition),
which may be arbitrarily complex, can be converted into one of two forms by applying a
few transformation rules (Jarke and Koch, 1984):

m Conjunctive normal form A sequence of conjuncts that are connected with the A
(AND) operator. Each conjunct contains one or more terms connected by the v (OR)
operator. For example:

(position = “Manager’ v salary > 20000) A branchNo = ‘B003’

A conjunctive selection contains only those tuples that satisfy all conjuncts.

m Disjunctive normal form A sequence of disjuncts that are connected with the v (OR)
operator. Each disjunct contains one or more terms connected by the A (AND) operator.
For example, we could rewrite the above conjunctive normal form as:

(position = “Manager’ A branchNo = ‘B003’ ) v (salary > 20000 A branchNo = ‘B003”)

A disjunctive selection contains those tuples formed by the union of all tuples that
satisfy the disjuncts.

(3) Semantic analysis

The objective of semantic analysis is to reject normalized queries that are incorrectly
formulated or contradictory. A query is incorrectly formulated if components do not
contribute to the generation of the result, which may happen if some join specifications
are missing. A query is contradictory if its predicate cannot be satisfied by any tuple. For
example, the predicate (position = ‘Manager’ A position = ‘Assistant”) on the Staff relation is
contradictory, as a member of staff cannot be both a Manager and an Assistant simultan-
eously. However, the predicate ((position = ‘Manager’ A position = ‘Assistant’) v salary >
20000) could be simplified to (salary > 20000) by interpreting the contradictory clause
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S1: This Selection operation contains an equality condition on the primary key. Therefore,
as the attribute staffNo is hashed we can use strategy 3 defined above to estimate the
cost as 1 block. The estimated cardinality of the result relation is SC,(Staff) = 1.

S2: The attribute in the predicate is a non-key, non-indexed attribute, so we cannot
improve on the linear search method, giving an estimated cost of 100 blocks. The
estimated cardinality of the result relation is SC,,.(Staff) = 300.

S3: The attribute in the predicate is a foreign key with a clustering index, so we can use
Strategy 6 to estimate the cost as 2 + [6/30] = 3 blocks. The estimated cardinality of
the result relation is SC,,...n.(Staff) = 6.

S4: The predicate here involves a range search on the salary attribute, which has a B*-tree
index, so we can use strategy 7 to estimate the cost as: 2 + [50/2] + [3000/2] = 1527
blocks. However, this is significantly worse than the linear search strategy, so in this
case we would use the linear search method. The estimated cardinality of the result
relation is SC,,.,(Staff) = [3000*(50000—-20000)/(50000—-10000)] = 2250.

S5: In the last example, we have a composite predicate but the second condition can be
implemented using the clustering index on branchNo (S3 above), which we know has
an estimated cost of 3 blocks. While we are retrieving each tuple using the clustering
index, we can check whether it satisfies the first condition (position = ‘Manager’).
We know that the estimated cardinality of the second condition is SC,,...w.(Staff) = 6.
If we call this intermediate relation T, then we can estimate the number of distinct
values of position in T, nDistinct,,.,(T), as: [(6 + 10)/3] = 6. Applying the second con-
dition now, the estimated cardinality of the result relation is SC,.0.(T) = 6/6 = 1,
which would be correct if there is one manager for each branch.

21.4.3 Join Operation (T = (R > S))

We mentioned at the start of this chapter that one of the main concerns when the relational
model was first launched commercially was the performance of queries. In particular, the
operation that gave most concern was the Join operation which, apart from Cartesian pro-
duct, is the most time-consuming operation to process, and one we have to ensure is per-
formed as efficiently as possible. Recall from Section 4.1.3 that the Theta join operation
defines a relation containing tuples that satisfy a specified predicate F' from the Cartesian
product of two relations R and S, say. The predicate F is of the form R.a 6 S.b, where 6 may
be one of the logical comparison operators. If the predicate contains only equality (=), the
join is an Equijoin. If the join involves all common attributes of R and S, the join is called
a Natural join. In this section, we look at the main strategies for implementing the Join
operation:

m block nested loop join;
m indexed nested loop join;
B sort-merge join;

m hash join.
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Table 21.2 Summary of estimated I/O cost of strategies for Join operation.

Strategies Cost
Block nested nBlocks(R) + (nBlocks(R) * nBlocks(S)), if buffer has only one block
loop join for Rand S

nBlocks(R) + [nBlocks(S)*(nBlocks(R)/(nBuffer — 2))], if (nBuffer — 2)
blocks for R

nBlocks(R) + nBlocks(S), if all blocks of R can be read into database

buffer

Indexed nested Depends on indexing method; for example:

loop join nBlocks(R) + nTuples(R)*(nLevels,(I) + 1), if join attribute A in S is the
primary key

nBlocks(R) + nTuples(R)*(nLevels,(I) + [SCA(R)/bFactor(R)]),
for clustering index I on attribute A

Sort-merge join nBlocks(R)*[log,(nBlocks(R)] + nBlocks(S)*[log,(nBlocks(S)], for sorts
nBlocks(R) + nBlocks(S), for merge
Hash join 3(nBlocks(R) + nBlocks(S)), if hash index is held in memory

2(nBlocks(R) + nBlocks(S))*[10g,pusser_1 (NBlocks(S)) — 1] + nBlocks(R)
+ nBlocks(S), otherwise

For the interested reader, a more complete survey of join strategies can be found in Mishra
and Eich (1992). The cost estimates for the different Join operation strategies are sum-
marized in Table 21.2. We start by estimating the cardinality of the Join operation.

Estimating the cardinality of the Join operation
The cardinality of the Cartesian product of R and S, R X S, is simply:
nTuples(R) * nTuples(S)

Unfortunately, it is much more difficult to estimate the cardinality of any join as it depends
on the distribution of values in the joining attributes. In the worst case, we know that the
cardinality of the join cannot be any greater than the cardinality of the Cartesian product, so:

nTuples(T) < nTuples(R) * nTuples(S)

Some systems use this upper bound, but this estimate is generally too pessimistic. If we
again assume a uniform distribution of values in both relations, we can improve on this
estimate for Equijoins with a predicate (R.A = S.B) as follows:

(1) If Ais a key attribute of R, then a tuple of S can only join with one tuple of R. There-
fore, the cardinality of the Equijoin cannot be any greater than the cardinality of S:

nTuples(T) < nTuples(S)
(2) Similarly, if B is a key of S, then:
nTuples(T) < nTuples(R)
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Figure 21.8
Algorithm for block
nested loop join.

(3) If neither A nor B are keys, then we could estimate the cardinality of the join as:
nTuples(T) = SC,(R)*nTuples(S)
or
nTuples(T) = SCy(S)*nTuples(R)

To obtain the first estimate, we use the fact that for any tuple s in S, we would expect
on average SC,(R) tuples with a given value for attribute A, and this number to appear in
the join. Multiplying this by the number of tuples in S, we get the first estimate above.
Similarly, for the second estimate.

(1) Block nested loop join

The simplest join algorithm is a nested loop that joins the two relations together a tuple at
a time. The outer loop iterates over each tuple in one relation R, and the inner loop iterates
over each tuple in the second relation S. However, as we know that the basic unit of
reading/writing is a disk block, we can improve on the basic algorithm by having two
additional loops that process blocks, as indicated in the outline algorithm of Figure 21.8.

Since each block of R has to be read, and each block of S has to be read for each block
of R, the estimated cost of this approach is:

nBlocks(R) + (nBlocks(R) * nBlocks(S))

With this estimate the second term is fixed, but the first term could vary depending on the
relation chosen for the outer loop. Clearly, we should choose the relation that occupies the
smaller number of blocks for the outer loop.

1

/I Block nested loop join

/I Blocks in both files are numbered sequentially from 1.
/I Returns a result table containing the join of R and S.
1

for iblock = 1 to nBlocks(R) { / outer loop
Rblock = read_block(R, iblock);
for jblock = 1 to nBlocks(S) { // inner loop

Sblock = read_block(S, jblock);
for i = 1 to nTuples(Rblock) {
for j = 1 to nTuples(Sblock) {
if (Rblock.tuple[i]/Sblock.tuple[j] match join condition)
then add them to result;
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Another improvement to this strategy is to read as many blocks as possible of the
smaller relation, R say, into the database buffer, saving one block for the inner relation, and
one for the result relation. If the buffer can hold nBuffer blocks, then we should read
(nBuffer — 2) blocks from R into the buffer at a time, and one block from S. The total
number of R blocks accessed is still nBlocks(R), but the total number of S blocks read is
reduced to approximately [nBlocks(S)*(nBlocks(R)/(nBuffer — 2))]. With this approach,
the new cost estimate becomes:

nBlocks(R) + [nBlocks(S)*(nBlocks(R)/(nBuffer — 2))]
If we can read all blocks of R into the buffer, this reduces to:
nBlocks(R) + nBlocks(S)

If the join attributes in an Equijoin (or Natural join) form a key on the inner relation, then
the inner loop can terminate as soon as the first match is found.

(2) Indexed nested loop join

If there is an index (or hash function) on the join attributes of the inner relation, then we
can replace the inefficient file scan with an index lookup. For each tuple in R, we use the
index to retrieve the matching tuples of S. The indexed nested loop join algorithm is out-
lined in Figure 21.9. For clarity, we use a simplified algorithm that processes the outer loop
a block at a time. As noted above, however, we should read as many blocks of R into the
database buffer as possible. We leave this modification of the algorithm as an exercise for
the reader (see Exercise 21.19).

This is a much more efficient algorithm for a join, avoiding the enumeration of the
Cartesian product of R and S. The cost of scanning R is nBlocks(R), as before. However,

1l
/I Indexed block loop join of R and S on join attribute A
/I Assume that there is an index I on attribute A of relation S, and
// that there are m index entries I[1], I[2], ... , I[m] with indexed value of tuple R[i].A
// Blocks in R are numbered sequentially from 1.
/I Returns a result table containing the join of R and S.
1l
for iblock = 1 to nBlocks(R) {

Rblock = read_block(R, iblock);

for i = 1 to nTuples(Rblock) {

forj=1tom {
if (Rblock.tuple[i].A = I[j])

then add corresponding tuples to result;

Figure 21.9
Algorithm for
indexed nested
loop join.
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the cost of retrieving the matching tuples in S depends on the type of index and the
number of matching tuples. For example, if the join attribute A in S is the primary key, the
cost estimate is:

nBlocks(R) + nTuples(R)*(nLevels,(I) + 1)
If the join attribute A in S is a clustering index, the cost estimate is:

nBlocks(R) + nTuples(R)*(nLevels,(I) + [SC,(R)/bFactor(R)])

(3) Sort-merge join

For Equijoins, the most efficient join is achieved when both relations are sorted on the join
attributes. In this case, we can look for qualifying tuples of R and S by merging the two
relations. If they are not sorted, a preprocessing step can be carried out to sort them. Since
the relations are in sorted order, tuples with the same join attribute value are guaranteed to
be in consecutive order. If we assume that the join is many-to-many, that is there can be
many tuples of both R and S with the same join value, and if we assume that each set of
tuples with the same join value can be held in the database buffer at the same time, then
each block of each relation need only be read once. Therefore, the cost estimate for the
sort—merge join is:

nBlocks(R) + nBlocks(S)

If a relation has to be sorted, R say, we would have to add the cost of the sort, which we
can approximate as:

nBlocks(R)*[log,(nBlocks(R))]

An outline algorithm for sort-merge join is shown in Figure 21.10.

(4) Hash join

For a Natural join (or Equijoin), a hash join algorithm may also be used to compute the
join of two relations R and S on join attribute set A. The idea behind this algorithm is to
partition relations R and S according to some hash function that provides uniformity and
randomness. Each equivalent partition for R and S should hold the same value for the
join attributes, although it may hold more than one value. Therefore, the algorithm has to
check equivalent partitions for the same value. For example, if relation R is partitioned into
Ri, Ry, - - ., Ry, and relation S into S, S,, . . ., S;, using a hash function /%(), then if B and
C are attributes of R and S respectively, and h(R.B) # h(S.C), then R.B # S.C. However, if
h(R.B) = h(S.C), it does not necessarily imply that R.B = S.C, as different values may map
to the same hash value.

The second phase, called the probing phase, reads each of the R partitions in turn and
for each one attempts to join the tuples in the partition to the tuples in the equivalent S
partition. If a nested loop join is used for the second phase, the smaller partition is used
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1
/I Sort-merge join of R and S on join attribute A
/I Algorithm assumes join is many-to-many.
/I Reads are omitted for simplicity.
/I First sort R and S (unnecessary if two files are already sorted on join attributes).
sort(R);
sort(S);
/I Now perform merge
nextR = 1; nextS = 1;
while (nextR <= nTuples(R) and nextS <= nTuples(S)) {
join_value = R.tuples[nextR].A;
/I scan S until we find a value less than the current join value
while (S.tuples[nextS].A < join_value and nextS <= nTuples(S)) {
nextS = nextS + 1;
}
/I May have matching tuple of R and S.
/I For each tuple in S with join_value, match it to each tuple in R with join_value.
/I (Assumes M:N join).
while (S.tuples[nextS].A = join_value and nextS <= nTuples(S)) {
m = nextR;
while (R.tuples[m].A = join_value and m <= nTuples(R)) {
add matching tuples S.tuples[nextS] and R.tuples[m] to result;
m=m+I;
}
nextS = nextS + 1;
}
/I Have now found all matching tuples in R and S with the same join_value.
/I Now find the next tuple in R with a different join value.
while (R.tuples[nextR].A = join_value and nextR <= nTuples(R)) {
nextR = nextR + 1;

as the outer loop, R; say. The complete partition R;is read into memory and each block of
the equivalent S; partition is read and each tuple is used to probe R, for matching tuples.
For increased efficiency, it is common to build an in-memory hash table for each parti-
tion R; using a second hash function, different from the partitioning hash function. The
algorithm for hash join is outlined in Figure 21.11. We can estimate the cost of the hash
join as:

3(nBlocks(R) + nBlocks(S))

This accounts for having to read R and S to partition them, write each partition to disk, and
then having to read each of the partitions of R and S again to find matching tuples. This

Figure 21.10
Algorithm for
sort-merge join.
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Figure 21.11
Algorithm for
hash join.

11
// Hash join algorithm
/I Reads are omitted for simplicity.
11
/I Start by partitioning R and S.
for i =1 to nTuples(R) {
hash_value = hash_function(R.tuple[i].A);
add tuple R.tuple[i].A to the R partition corresponding to hash value, hash_value;
}
for j =1 to nTuples(S) {
hash_value = hash_function(S.tuple[j].A);
add tuple S.tuple[j].A to the S partition corresponding to hash value, hash_value;
}
/I Now perform probing (matching) phase
for ihash =1 to M {
read R partition corresponding to hash value ihash;
RP = Rpartition[ihash];
for i =1 to max_tuples_in_R_partition(RP) {
// build an in-memory hash index using hash_function2( ), different from hash_function( )
new_hash = hash_function2(RP.tuple[i].A);
add new_hash to in-memory hash index;
}
/I Scan S partition for matching R tuples
SP = Spartition[ihash];
for j = 1 to max_tuples_in_S_partition(SP) {
read S and probe hash table using hash_function2(SP.tuple[j].A);
add all matching tuples to output;
}

clear hash table to prepare for next partition;

estimate is approximate and takes no account of overflows occurring in a partition. It also
assumes that the hash index can be held in memory. If this is not the case, the partitioning
of the relations cannot be done in one pass, and a recursive partitioning algorithm has to

be used. In this case, the cost estimate can be shown to be:

2(nBlocks(R) + nBlocks(S))*[log, gy (NBlocks(S)) — 1]
+ nBlocks(R) + nBlocks(S)

For a more complete discussion of hash join algorithms, the interested reader is referred
to Valduriez and Gardarin (1984), DeWitt et al. (1984), and DeWitt and Gerber (1985).
Extensions, including the hybrid hash join, are described in Shapiro (1986), and a more
recent study by Davison and Graefe (1994) describe hash join techniques that can adapt to

the available memory.
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Example 21.5 Cost estimation for Join operation

For the purposes of this example, we make the following assumptions:

m There are separate hash indexes with no overflow on the primary key attributes staffNo
of Staff and branchNo of Branch.

m There are 100 database buffer blocks.

m The system catalog holds the following statistics:

nTuples(Staff) = 6000

bFactor(Staff) =30 = nBlocks(Staff) =200
nTuples(Branch) =500

bFactor(Branch) =50 = nBlocks(Branch) =10
nTuples(PropertyForRent) = 100,000

bFactor(PropertyForRent) = 50 = nBlocks(PropertyForRent) = 2000

A comparison of the above four strategies for the following two joins is shown in
Table 21.3:

J1:  Staff g, PropertyForRent
J2:  Branch pdpaneme PropertyForRent

In both cases, we know that the cardinality of the result relation can be no larger than the
cardinality of the first relation, as we are joining over the key of the first relation. Note that
no one strategy is best for both Join operations. The sort-merge join is best for the first
join provided both relations are already sorted. The indexed nested loop join is best for the
second join.

Table 21.3 Estimated I/O costs of Join operations in Example 21.5.

Strategies J1 J2 Comments
Block nested loop join 400,200 20,010 Buffer has only one block for R and S
4282 N/A? (nBuffer — 2) blocks for R
N/A® 2010 All blocks of R fit in database buffer
Indexed nested loop join 6200 510 Keys hashed
Sort-merge join 25,800 24,240 Unsorted
2200 2010 Sorted
Hash join 6600 6030 Hash table fits in memory

* All blocks of R can be read into buffer.

® Cannot read all blocks of R into buffer. I



